Erlang

“Software for a concurrent world”
CWI Amsterdam

Arjan Scherpenisse
14 december 2012

arjan@miraclethings.nl

mailto:arjan@miraclethings.nl

Agenda

* |ntro

* Language essentials

* Concurrency / failure

« OTP

« VM / GC / optimisations / pitfalls

) “-I‘:E garit - 11 videos 3!554

http://www.youtube.com/watch?v=zY-IueSMAPc

What is Erlang’?

ERICSSON 2

TAKING YOU FORWARD

Open
Source

History

» Created in ‘86
= Open-sourced in 98
» “Programming Erlang” published in "0O7

= [aking off in popularity (3 more books on the way)

Erlang Philosophy

The world i1s concurrent

nings in the world dont share data

nings communicate with messages

nings fail

- Joe Armstrong

Language essentials

She's got the look

—modulieHiiiei= o Mci=niCEy)
-export ([square/1]) .

sjefiuiziiesi () —>

0.9
XF S

Data types

* |Integer / float
 Atoms
 Tuples

e Lists

* Binaries

... SO where are strings?

Datatypes (cont)

e Functions
e Pids
e Ports

The “fun” in functional

@ Anonymous functions

@ Used for higher-order programming

Square = TN = XS XM TIET,

Cube = fun ()i =—> SuarEc (POQ8 - X end.

List Comprehensions

@ Takes an expression and a set of qualifiers
and returns another list (like Pythons)

@ Looks likers(X i | Ol 02 & v On |

sffepae (0]) —=> [i]

gsOord [Baveis | il
gsort{IfX [[@ Enarot |)
ot [y o
spsfepre (L il <= G SestePangg t))

Recursion (important)

* Function directly or indirectly calling itself
* It's how you iterate!

* Tail optimization enables long running loops
(eliminates unbounded stack growth)

The Shell (super important)

Single most important tool for
Erlang developers!

Use to experiment, learn, Read
prove/disprove Eval
Important to know: L rint |

— erl starts the shell!

— ctrl-c, ctrl-c stopsthe shell abruptly!
— g() . shuts down cleanly

— Expressions always end in a period!

Guards

@ Simple tests against a pafttern matching

® Can make code more concise

=0, (947
11z 5 0 -

Y)
)

Wwhen X > X
-> Y.

= il

The Shell (super important)

Single most important tool for
Erlang developers!

Use to experiment, learn, Read
prove/disprove Eval
Important to know: L rint |

— erl starts the shell!

— ctrl-c, ctrl-c stopsthe shell abruptly!
— g() . shuts down cleanly

— Expressions always end in a period!

Side-Effects

. Erlangm;:iure-functinnal language
* Side effects:

— Messages - Pid | Msg —send message to process Pid
— Signals - i.e. your linked process is dead

— Exceptions

— /0

— Process Dictionary - similar to TLS (thread local storage)
— ETS / DETS - fast in-memory / persistent lookup tables
— Mnesia - distributed realtime database (STM)

Concurrency / failure

Concurrency

 spawn, spawn_link
e |, receive

e Concurrency properties
- Lightweight process model in Erlang VM
e (not OS processes or threads)
- No data sharing (inherited from functional nature)
— Built in distributed system support

e Safe and conditional messaging
e Process monitoring and failure notification

Simple Process Communication

1> F = fun() -> receive {From, Msg} ->
From ! {got, Msg, thanks} end end.

#Fun<erl eval.20.67289768>

2> Pid = spawn (F) .

<0.36.0>

3> flush{().

ok

4> Pid ! {self (), "hey"}.

{<0.33.0>,"hey"}

o> flush{().

Sshell got {got, "hey", thanks}

ok

Concurrency and Messaging

e Model: create a process for every independent activity
- Processes are lightweight

e Communicate between processes using messages
e (Crazy) Example to get in the Erlang mindset

area_server

area server ! {square, Side} {square, 3}

receive
> {square, Side} ->
‘{reply, 9} client | {reply, Side*Side}

end

The Actor Model

e Actors communicate through messages

e Actors make local decisions as to handle messages
- Send more messages
- Create more actors
- Decide how to respond to future messages (change local
state)
e Actor model prohibits shared state and is a nice
formalism for parallel computing

The Erlang Process Model

e A concurrent execution context in the Erlang VM
- Stack, yes in so much as Erlang uses a stack.
-~ No heap. No memory allocation at all in fact.

e Processes do not map to OS processes or threads
- Consume no resources in the underlying OS

e Can create thousands or millions of processes on a
single Erlang instance
- Initially processes have small memory footprints

- Idle processes await receive use no resources (until a
message is delivered to them)

Process Scheduling

e Each process get a number of reductions
- Reductions are processing credits
- Each operation decreases the reductions

e Processes are preempted when

- They perform a receive (await a message)
- Reductions go to zero

- Blocking/slow calls (e.g. I/0, system calls) are implemented via
send/receive so they get handled automatically

e Realizing soft-real time

- Small reductions (about 2000) per process
— Lightweight process switching
-~ No memory protection issues

Multi-Core Support

e Treat a multicore machine as a distributed system
- Separate run queues, independent scheduling across cores

e No changes to actor model
- Processes communicate through messages

e VM can leverage shared memory
- For code, literals, process information, messaging

e Other systems things e —
- Process migration
- Load balancing

3
=
=
i
. -

o 1

un ques 2

run queye N

e &N

Process Error Handling

e Features underlying built-in fault tolerance

e Ethos

— “Let it crash and let someone else deal with it”
- “Crash early” (Crash often?)

e Process linking and monitoring

— Notification if processes fail or are unavailable/disconnected
- Symmetric (linked) and assymetric (monitor)
- Exit signals (notification messages when processes terminate)

link/1 and spawnlink/3

e link/1 connects to an existing process

e spawnlink/3 spawns a process linked to current proc.
- This is atomic and almost always preferable to spawn then link

Figure 6-1. Linked processes

ﬁ {"EXIT', Pid, Reason} ﬁ

Figure 6-2. Exit signals

Error Propagation

e link/1 is a good technique to propagate errors
— To fail all related process (the Erlang way) and reveal errors
- To have a monitor restart

{'EXIT', A, Reason) o

{"EXIT', B, Reason}

i.:J-J'rjr,-.l J':,l I'Jl"lll'l I T ..l'rl.F CisFes rfc

Fundamental pieces

Send
Cnntam Run
Are sent to

OTP: Open Telecom Platform

OTP=0Open Telecom Platform

e Library of implemented application frameworks
- Users customize behavior by callback functions

e Client/server

- OTP handles timeouts, safegaurds, message protocol,
process registration

e Process monitoring

-~ OTP handles fault detection, automatic restart, start and
shutdown, managing process state

e Effective code reuse!

OTP

e application

- Contains independent code, multiple applications
per Erlang node

e supervisor
— Supervises worker processes and supervisors
e gen_server

- Basic work unit

GC / optimisation / pitfalls

Performance

Processes are cheap

Data copying is expensive

Handle much of request in single process
Cache locally in process dict

Reduce size of messages

Bigger binaries (> 64 bytes) are shared and reference
counted, make use of them.

String processing is expensive
Keep eye on process inboxes

Garbage Collection

* per process, no global gc sweep = no locking
of vm

e can specify per-process initial heap size
» prevent big GCs
* keep big data outside process
e Orin process dict
 large binaries = external, use refcounting

Common Pitfalls

* Message inbox overflowing
e Atom table injection / crash
VM tweaks needed for

- nr of open file descriptors
- nr of processes
- heap size

Erlang is a good fit for:

* Irregular concurrency:
— Task-level
— Fine-grained parallelism

* Network servers
* Distributed systems

* Middleware:
— Parallel databases
— Message Queue servers

* Soft Realtime / Embedded applications
* Monitoring, control and testing tools

Not so good fit for:

Concurrency for synchronized parallel execution
— Data Parallelism

Floating-point intensive code (HPC)

Text Processing / Unicode
— Unicode support now much better

Traditional GUI (supports Tk and wxWidgets)
Hard Realtime applications

Extensive interop with other languages/VMs

— improvement here with NIFs and Erjang - Erlang on
JVM

Outro

What / mainly use it for

* Full-stack web development
— http://zotonic.com/
 HA backend systems

= C [www.cwinl <7 O »

Preventing stuff like this —

=)

Site off-line

The site is currently not available due to technical problems. Please try again later.
Thank you for your understanding.

If you are the maintainer of this site, please check your database settings in the settings. php file
and ensure that your hosting provider's database server is running. For more help, see the

handbook, or contact your hosting provider.

http://zotonic.com/

Tools

IDE:

— Emacs, Distel, Plugins for Eclipse and Netbeans
Testing:

— e-unit, proper, meck, triq, QuickCheck (paid)
Static code analyzer

— Dialyzer

Debug and trace

— Built-in in VM

Build:

— emake, rebar

Package Managers:
— rebar, agner, sinan, CEAN

Books

wo OTP IR

INACTION RS

Sources of Inspiration

Erlang - the ghetto

Intro to erlang (slideshare)

Erlang - message passing concurrency (slideshare)
Erlang concepts (slideshare)

Concurrency and Paralellism in Erlang (hopkins univ)

http://www.youtube.com/watch?v=zY-IueSMAPc
http://www.slideshare.net/kenpratt/intro-to-erlang#btnPrevious
http://www.slideshare.net/Arbow/erlang-message-passing-concurrency-for-the-win#btnNext
http://www.slideshare.net/nivertech/erlang-concepts-11823103
http://hssl.cs.jhu.edu/wiki/lib/exe/fetch.php?media=randal:teach:cs420:lec17.erlang.pdf

Thanks!

Arjan Scherpenisse
arjan@miraclethings.nl

http://twitter.com/acscherp
http://miraclethings.nl/

mailto:arjan@miraclethings.nl
http://twitter.com/acscherp
http://miraclethings.nl/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

